N-dimensional Likelihood Profiling (NLP) An Efficient Alternative to Bootstrap

Bill Denney
PAGE 2012 – Venice

- Motivation: Bootstrapping is hard!
- Solution: N-dimensional Likelihood Profiling
 - Faster solution than bootstrapping with easy convergence
- Examples of application
- Summary and conclusion

A day in the life of a quantitative clinical pharmacologist...

■ A semi-mechanistic, highly nonlinear PK/PD model to assess drug effects.

■Need to discuss simulation with uncertainty with the study team... And we need it soon...

But, bootstrapping takes forever

+How can I simulate with uncertainty?

How can I simulate with uncertainty?

Bootstrap Covariance LLP Matrix

Gold standard	Quick (if possible)	Reliable one parameter CI
Completes slowly	Sometimes not available	Doesn't work with >1 parameter.
Doesn't always complete	Often not a good estimate of the CI	Cannot simulate
May not have enough subjects	Assumption heavy	

Photo: Jim Bowen

NLP: Filling the Gap

■The Idea:

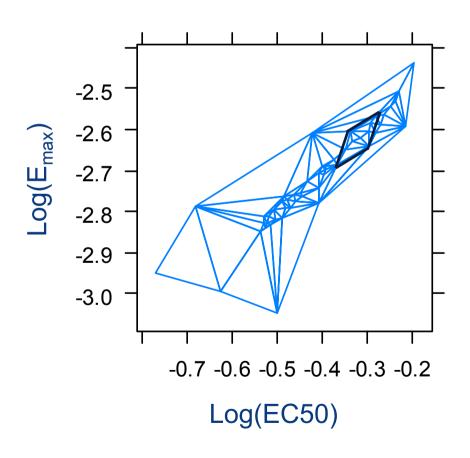
Extend LLP to higher dimensionality allowing to sample the empirical distribution for simulation.

Faster solution than bootstrapping with easy

convergence.

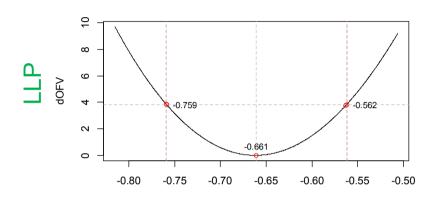
■The Problem: Not so simple!

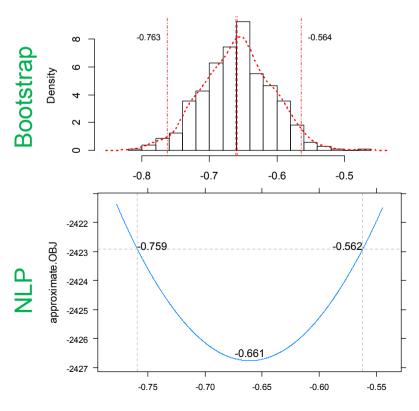
◆Requires integration of the likelihood surface in N dimensions.


Photo: Chris Lott

How does NLP work?

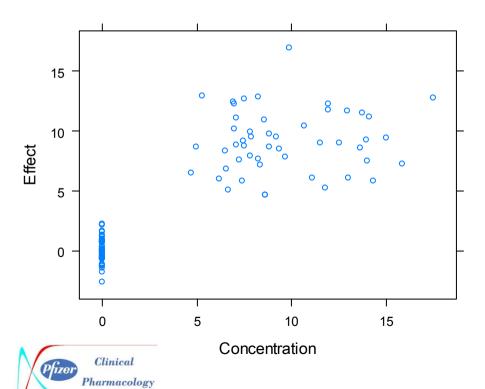
- From the initial estimates (θ_0)
- Relative likelihood values around θ_0 are searched maximizing information until convergence.

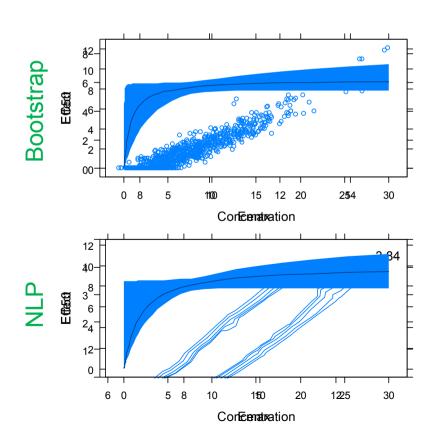




NLP in one dimension

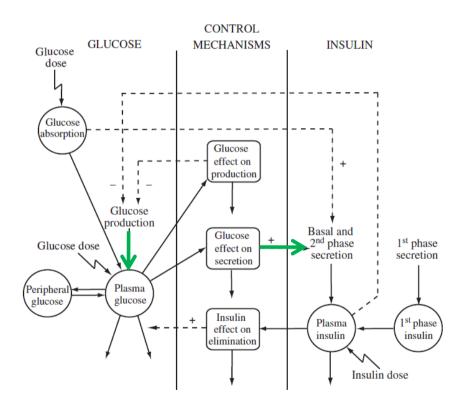
- Compare LLP, Bootstrap, and NLP with one parameter of a two compartment PK model.
- ■All provide equal results.
- ■Model evaluations:
 - **LLP 5**
 - ◆Bootstrap 1000
 - •NLP 8



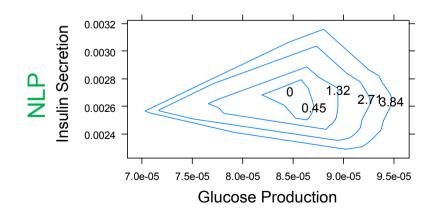


NLP in multiple dimensions

- In a "no regrets dose" study...
- ■What can we infer about Emax/EC50?



LLP


A day in the life of a quantitative clinical pharmacologist... made simpler.

Silber, H. E., Jauslin, P. M., Frey, N. and Karlsson, M. O. Basic & Clinical Pharmacology & Toxicology, 106: 189–194.

Bootstrap did not complete after 10 days on a computational cluster.

NLP converged in 1 day on my laptop.

Conclusions

- ■NLP allows estimation and sampling of the likelihood surface in multiple dimensions (≤5).
- Faster solution than bootstrap with easy convergence for
 - Long parameter estimation times,
 - Small populations,
 - Fixed parameters,
 - High bootstrap non-convergence rates.

Acknowledgements

- ■Gianluca Nucci
- ■Wei Gao
- ■Ted Rieger
- ■Avi Ghosh

THANK YOU!

Photo: Rose Robinson

BACKUPS

■Covariance matrix

 Assumes that local curvature at the minimum defines full distribution.

LLP

◆Find the point where OBJ increases by X (3.84 = 95% CI) through iteration.

■NLP

- Find the (piecewise, continuous) equation that defines the OBJ surface as a function of model parameters.
- Can be used like LLP for one dimension, but allows sampling.
- Provides multivariate empirical distribution.

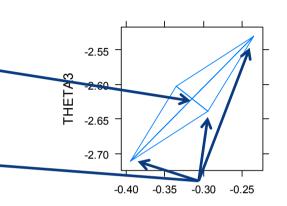
■Bootstrap

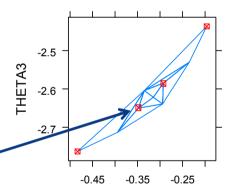
Find parameter estimates through population resampling.

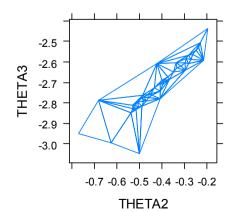
Summary

	LLP	Bootstrap	NLP
Can Sample for Simulation	No	Yes	Yes
CPU Time	~1x N	~1000-2000x N	~5-100x N
Dimensions	1	Full	Intermediate
Uncertainty in FIXED Parameters	Yes	No	Yes

Green indicates two best for row.


How does NLP work?


- ■Start with the initial parameter estimates (θ_0) .
- Fix the parameters of interest at values away from θ_0 forming an initial set of simplexes.
- ■For each simplex (i): While $(\int \text{new}_i d\theta - \int \text{old}_i d\theta) > \text{tol}$ • Store $\int \text{old}_i d\theta = \int \text{new}_i d\theta$


 - Refine points and run model at new points.
 - -Adding where error was previously observed; allows parallelization.
 - Compute ∫ new_i dθ

Pharmacology

User-defined parameters are for point selection and Δ integration tolerance.

Future extensions

- Analytical integration of n-dimensional likelihood surface will very significantly decrease estimation time in higher dimensions.
 - •Improved interpolation methods will similarly reduce integration time and number of iterations required.
- If estimating full dimensionality of the problem (all non-fixed θs, ηs, and σs), faster methods (using maxeval=0) can be used to simply sample the likelihood surface at that point.
 - ◆Typically will require above improvements in integration and/or interpolation.

